
CURVATURE BOUNDS ON SUBANALYTIC SPACES

ANDREAS BERNIG

Abstract. Curvature bounds which play the role of Ricci, scalar curva-
ture and Einstein tensor bounds are introduced for subanalytic topolog-
ical manifolds. It is shown, using metric properties of subanalytic sets,
that an upper (lower) bound on the sectional curvature in the sense of
Alexandrov implies an upper (lower) bound on the Ricci curvature and
on the Einstein tensor. In the same way, an upper (lower) bound on
the Ricci curvature or on the Einstein tensor implies an upper (lower)
bound on the scalar curvature.

1. Introduction

We recently showed that there is no reasonable notion of Ricci tensor for sub-
analytic spaces, whereas one can define an Einstein tensor for such spaces
([5]). Using some heuristics, one can still guess, by looking at the Ein-
stein tensor, what Ricci curvature bounds on subanalytic spaces could look
like. The aim of this paper is to define and study such curvature bounds.
We construct a complete theory of curvature bounds for subanalytic spaces
including sectional curvature, Ricci curvature, Einstein tensor and scalar
curvature. The main theorem states roughly that all classical implications
between such curvature bounds also hold in the subanalytic context. It is a
generalization of the theorems in [1] and [2], the proof presented here being
easier thanks to the use of quasi-geodesics.

Let M be a real analytic manifold endowed with a Riemannian metric g.
Consider a compact subanalytic subset X ⊂ M . For the definition of suban-
alytic sets, see 3.1. We suppose that X is a connected topological manifold
of dimension n. The metric g of the ambient space M induces a length
metric d on X. Any two points in X can be connected by a (not necessarily
unique) geodesic, i.e. (X, d) is a geodesic metric space.

We define curvature bounds which will play the same role as Ricci, scalar
curvature and Einstein tensor bounds on Riemannian manifolds. For the
case of sectional curvature, we can use the existing theory of Alexandrov
spaces with lower or upper curvature bounds.

For Ricci and scalar curvature and the Einstein tensor, we use a Verdier
stratification of X (see 3.2). Strata of highest dimension are just Riemannian
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manifolds and therefore have a Ricci tensor, an Einstein tensor and a scalar
curvature. A neighborhood of a point x of a stratum S of codimension 1
(i.e. dimension n− 1) is the union of S with two C1-manifolds Γ1, Γ2 with
boundary S. The tangent space of Γi, i = 1, 2 at x splits as TxS ⊕ Rvi

+,
where vi

+ is a unit vector pointing to Γi.

We define the second fundamental form of S in X at the point x by setting
II(u, u) := IIv1

+
(u, u) + IIv2

+
(u, u). In other words, we consider S as bound-

ary of Γ1 and Γ2, take the corresponding second fundamental forms and add
them.

We also need the density of X at a point x ∈ X. This is the limit θ(X, x) :=
limr→0+

Hn(X∩B(x,r))
bnrn , where Hn denotes n-dimensional Hausdorff volume

and bn is the volume of the unit ball in Rn. The limit exists by a theorem
of Kurdyka-Raby ([19]). Instead of taking the ball B(x, r) of the ambient
space, we could as well take the ball Bi(x, r) for the induced length metric
on X. The corresponding density is the same by an easy argument in [1].

The main definition is the following.

Definition 1.1. Curvature bounds on subanalytic spaces
Let X be a compact subanalytic subset of a real analytic manifold M , en-

dowed with a Riemannian metric g. Suppose that X is a topological mani-
fold. Let κ be a real number.

• X has sectional curvature bounded from above (below) by κ, if (X, d)
is a metric space with curvature bounded from above (below) by κ in
the sense of Alexandrov (see Section 2 for details).

• X has Ricci curvature bounded from above (below) by (n− 1)κ, if for
one Verdier stratification (and then for all such stratifications) the
following three conditions hold:

– On a highest dimensional stratum S , ric ≤ (n − 1)κg|S (ric ≥
(n− 1)κg|S), where ric is the (0, 2) Ricci tensor of S.

– On a stratum S of codimension 1, II ≤ 0 (II ≥ 0).
– For all points x ∈ X, θ(X, x) ≥ 1 (θ(X, x) ≤ 1).

• X has Einstein tensor bounded from above (below) by
(
n−1

2

)
κ, if for

one Verdier stratifications (and then for all such stratifications) the
following three conditions hold:

– On a highest dimensional stratum S , E := s
2g− ric ≤

(
n−1

2

)
κg|S

(E ≥
(
n−1

2

)
κg|S).

– On a stratum S of codimension 1, tr IIg|S − II ≤ 0 (tr IIg|S −
II ≥ 0).

– For all points x ∈ X, θ(X, x) ≥ 1 (θ(X, x) ≤ 1).
• X has scalar curvature bounded from above (below) by n(n − 1)κ, if

for one Verdier stratification (and then for all such stratifications) the
following three conditions hold:

– On a highest dimensional stratum S , s ≤ n(n− 1)κ (s ≥ n(n−
1)κ), where s is the scalar curvature of S.

– On a stratum S of codimension 1, tr II ≤ 0 (tr II ≥ 0).
– For all points x ∈ X, θ(X, x) ≥ 1 (θ(X, x) ≤ 1).
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As a first example, note that these curvature bounds reduce to the classical
bounds if X is a smooth submanifold of M . What is more interesting is
that our definition moreover takes care of the singularities of X. If X is
twodimensional and subanalytic, then sectional, Ricci and scalar curvature
bounds all agree, as in Riemannian geometry. However, this is not so easy
to see. It follows from the results of [10].

The simplest relation between curvatures in Riemannian geometry is the
fact that bounds on the sectional curvature imply bounds on Ricci curvature
and Einstein tensor, whereas bounds on Ricci curvature as well as bounds
on Einstein tensor imply bounds on scalar curvature. The question arises if
this is also the case in the subanalytic setting. The (positive) answer is the
main result in this paper.

Theorem 1. Comparison theorem
Let X be a compact subanalytic subset of a real analytic manifold M ,

equipped with a Riemannian metric g. Suppose that X is a topological man-
ifold of dimension n.

• If X has sectional curvature bounded from above (below) by κ, then
its Ricci curvature is bounded from above (below) by (n− 1)κ and its
Einstein tensor is bounded from above (below) by

(
n−1

2

)
κ.

• If X has Ricci curvature bounded from above (below) by (n− 1)κ, or
if X is of dimension ≥ 3 and has Einstein tensor bounded from above
(below) by

(
n−1

2

)
κ, then its scalar curvature is bounded from above

(below) by n(n− 1)κ.

The obvious corollary that a bound κ on the sectional curvature implies a
bound n(n − 1)κ on the scalar curvature was proved in [1] and [2] (with a
slightly weaker notion of bounds for scalar curvature). In comparison to the
cited papers, the proof presented here is easier in some respects. First of
all, a better understanding of the density in metric spaces is obtained by
using the (easy) Propositions 2.4 and 2.5. Secondly, the case of strata of
codimension 1 is simplified by using Proposition 4.1. This proposition is the
main technical argument in the proof of the comparison theorem, since it
relates the metric geometry of X near a stratum of codimension 1 to the
second fundamental form of the stratum. For the proof, we have to use all
we know about subanalytic spaces. In particular, Paw lucki’s theorem gives
a better insight in the local structure near such a stratum, the Verdier and
Whitney conditions are used several times and estimates on the length of
geodesics are proved. Finally, the theory of quasi-geodesics is applied in
combination with Proposition 4.1 to give a shorter and more general proof
in the case of lower curvature bounds.

Our main theorem is a satisfactory generalization of the classical impli-
cations between curvature bounds and shows that the definition of Ricci
curvature bounds is the right choice. However, the generalization of the
classical Bochner and Myer theorems would require a more detailed study
of geodesics on subanalytic spaces, including a second variation formula.

Let us mention that there exists a theory of collapsing for lower Ricci cur-
vature bounds by Cheeger-Colding ([13]). In particular, they also define
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(lower) Ricci curvature bounds on metric spaces, but new ideas would be
necessary to compare with our bounds. The reason is that one knows too
less about volumes of (metric) balls on subanalytic sets.

Thanks. This research was carried out with the help of DFG Grant 2484/1-
2 at the university of Zurich. I would like to thank the DFG for their support
and Viktor Schroeder for hospitality during my stay at Zurich.

2. Alexandrov spaces with curvature bounded from above or
from below

2.1. Geodesic spaces and curvature bounds. We can not give here, of
course, a satisfactory treatment of spaces with curvature bounds. We refer
the reader to [11], [9] and [12] for much more details and proofs. However,
we will include some basic notions and properties in order to make this paper
as much self-contained as possible.

In a metric space (X, d), a geodesic is the image of an isometry [0, L] →
X, L ≥ 0. Equivalently, a geodesic between x, y ∈ X is a path of length
d(x, y) between x and y. Similarly, a local geodesic is the image of a local
isometry [0, L] → X, L ≥ 0.

A geodesic metric space is by definition a metric space in which every pair
of points (x, y) can be connected by a geodesic. If every pair of points (x, y)
with d(x, y) < D can be connected by a geodesic, then (X, d) is called D
geodesic.

A geodesic triangle in (X, d) consist of three points x, y, z ∈ X together
with three geodesics [x, y], [x, z], [y, z]. The perimeter of such a triangle is
the sum d(x, y) + d(y, z) + d(z, x).

Let M2
κ be the unique complete, simply connected two-dimensional Rie-

mannian manifold of constant curvature κ and Dκ its diameter, i.e. Dκ = ∞
if κ ≤ 0 and Dκ = π√

κ
if κ > 0. If the diameter of a geodesic triangle is less

than 2Dκ, then there exists a comparison triangle x̃, ỹ, z̃ in M2
κ such that

d(x̃, ỹ) = d(x, y), d(x̃, z̃) = d(x, z), d(ỹ, z̃) = d(y, z). Given p ∈ [x, y], q ∈
[x, z], there are uniquely defined comparison points p̃ ∈ [x̃, ỹ], q̃ ∈ [x̃, z̃] such
that d(x̃, p̃) = d(x, p), d(x̃, q̃) = d(x, q).

Definition 2.1. • A metric space is a CAT(κ)-space if it is Dκ geodesic
and for all geodesic triangles (x, y, z, [x, y], [x, z], [y, z]) of perimeter
less than 2Dκ and all points p ∈ [x, y], q ∈ [x, z]

d(p̃, q̃) ≥ d(p, q).

• X is said to have curvature bounded from above by κ if for each x ∈ X,
there exists r > 0 such that B(x, r) = {y ∈ X, d(y, x) ≤ r} with the
induced metric is a CAT (κ) space.

• X is said to have curvature bounded from below by κ, if it is geodesic
and each point has a neighborhood U of diameter less than Dκ such
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that for all geodesic triangles (x, y, z, [x, y], [x, z], [y, z]) contained in
U and all points p ∈ [x, y], q ∈ [x, z]

d(p̃, q̃) ≤ d(p, q).

In intuitive terms, small triangles in a space of curvature bounded from
above (below) are “thinner” (“fatter”) than triangles in M2

κ .

A first difference between these two kinds of curvature bounds is that in
the case of lower curvature bounds, one has a globalization theorem which
states that the triangle comparison holds even in the large. This theorem is
also known as Toponogov’s theorem.

In a space X of curvature bounded from above, local geodesics can be ex-
tended under weak topological assumptions. If for each point x ∈ X there
exists r > 0 such that the set B(x, r) \ {x} is not contractible, then local
geodesics can be extended indefinitely. The assumption holds, for instance,
if X is a topological manifold or a homology manifold. We say in this case
that X has the geodesic extension property. We note further that local
geodesics of length at most Dκ in a CAT(κ)-space are geodesics.

2.2. Densities in spaces with curvature bounds. For later use, we will
prove some propositions concerning densities in spaces with (upper or lower)
curvature bounds.

Proposition and Definition 2.2. Let X be a space of curvature bounded
from above by κ ∈ R which has the geodesic extension property. Then for
all x ∈ X and all real α ≥ 0, the limit

θα(X, x) := lim
r→0

Hα(B(x, r))
bαrα

∈ [0, +∞]

exists, where bα = π
α
2

Γ(α
2
+1) is the volume of the “α-dimensional unit ball”

and Hα denotes α-dimensional Hausdorff measure. This limit is called the
α-dimensional density of X at x.

Proof: The curvature bound implies that there is some R0 such that the
ball B(x, R0), endowed with the induced metric, is a CAT(κ) space. By
shrinking R0 if necessary, we can suppose that R0 < Dκ.

Given 0 < r < R < R0, let Φ : B(x,R) → B(x, r) be the map that sends y
to the point y′ on the (unique) geodesic [x, y] which is at distance r

Rd(x, y)
from x.

We claim that Φ is surjective. To see this, choose y′ ∈ B(x, r). The geodesic
between x and y′ can be extended to a local geodesic γ of length R

r d(x, y′) <
R0 < Dκ. In a CAT(κ) space, every local geodesic of length at most Dκ is
actually a (global) geodesic, see ([9], Prop. II 1.4). It follows that γ is a
geodesic. If y denotes its endpoint, Φ(y) = y′. This proves surjectivity.

If κ ≤ 0, the CAT(κ)-inequality implies that d(Φ(y1), Φ(y2)) ≤ r
Rd(y1, y2).

Therefore, the α-dimensional Hausdorff-measure of the image of Φ is at most
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r
R

)αHαB(y, R). Since Φ is surjective, it follows that

Hα(B(y, r))
bαrα

≤ Hα(B(y, R))
bαRα

,

from which the claimed existence of the limit follows.

If κ > 0, the argument is similar, although a bit more technical. We need
the following lemma, taken from ([9], Lemma II 3.20).

Lemma 2.3. For each κ ∈ R, there exists a continuous function Cκ :
[0, Dκ) → R>0 such that limR→0 Cκ(R) = 1 and for all x ∈ M2

κ , all
y1, y2 ∈ B(x,R) and all 0 ≤ ε ≤ 1

Cκ(R)−1εd(y1, y2) ≤ d(εy1, εy2) ≤ Cκ(R)εd(y1, y2),

where εy1 denotes the point at distance εd(x, y1) from x on the geodesic
between x and y1.

We return to the proof of the proposition. The lemma and the CAT(κ)
inequality imply that d(Φ(y1), Φ(y2)) ≤ Cκ(R) r

Rd(y1, y2). Therefore,

Hα(B(x, r))
bαrα

≤ Cκ(R)αHα(B(x,R))
bαRα

, (1)

and the existence of the limit follows from limR→0 Cκ(R) = 1. 2

Proposition 2.4. Let X be a metric space with curvature bounded from
above by κ which has the geodesic extension property. Then the function
θα : X 7→ [0,∞] is upper semi-continuous for all real numbers α ≥ 0.

Proof: Fix some x ∈ X. It is sufficient to show that for all δ ∈ [0,∞)
and all sequences y1, y2, . . . converging to x, θα(X, yi) ≥ δ for all i implies
θα(X, x) ≥ δ.

Let εi := d(x, yi). By triangle inequality, B(yi, r − εi) ⊂ B(x, r). We fix
r > 0. For all sufficiently big i, we have εi < r and

Hα(B(x, r))
bαrα

≥ Hα(B(yi, r − εi))
bαrα

≥
(
1− εi

r

)α

Cκ(r − εi)α
δ.

Letting i tend to infinity, we get
Hα(B(x, r))

bαrα
≥ δ

Cκ(r)α
.

Taking the limit on both sides as r → 0 and using limr→0 Cκ(r) = 1 we
finally obtain θα(X, x) ≥ δ. 2

The situation in spaces with curvature bounds from below is quite similar.
The corresponding proposition is the following.

Proposition 2.5. Let X be a space with curvature bounded below by κ ∈ R.
Then for each x ∈ X and each α ≥ 0, the limit

θα(X, x) := lim
r→0

Hα(B(x, r))
bαrα

∈ [0, +∞]

exists. The function x 7→ θα(X, x) is lower semi-continuous.
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Proof: Consider for 0 < r < R the map Φ : B(x, R) → B(x, r) which
sends a point y in B(x,R) to the point at distance r

Rd(x, y) from x on some
geodesic between x and y. Since geodesics in spaces with lower curvature
bounds need not be unique, this map is in general neither unique nor con-
tinuous. But the Alexandrov inequality combined with Lemma 2.3 imply
that

d(Φ(y1), Φ(y2)) ≥ Cκ(R)−1 r

R
d(y1, y2).

Passing to the α-dimensional Hausdorff measure yields
HαB(x, r)

bαrα
≥ Cκ(R)−αHαB(x, R)

bαRα
.

This inequality implies the existence of the limit for r → 0, since limR→0 Cκ(R) =
1.

The upper semi-continuity is proved in a similar way as in the case of upper
curvature bounds. It is enough to show that for all δ ∈ [0,∞) and all
sequences y1, y2, . . . converging to x, θα(X, yi) ≤ δ for all i implies θα(X, x) ≤
δ.

Set εi := d(x, yi). By triangle inequality, B(x, r) ⊂ B(yi, r+εi) and therefore
HαB(x, r)

bαrα
≤ HαB(yi, r + εi)

bα (r + εi)
α

(
1 +

εi

r

)α
≤ Cκ(r + εi)α

(
1 +

εi

r

)α
δ.

Letting i tend to ∞, and afterwards letting r tend to 0, we get θα(X, x) ≤ δ.
2

2.3. Quasi-geodesics. In spaces with lower curvature bounds, geodesics
can not be extended in general, even if the space is a topological manifold.
We therefore use quasi-geodesics as substitute for geodesics. The following
lemmas and propositions are taken from [21] and [22].

Definition 2.6. Let X be a metric space with curvature bounded from below
by κ ∈ R. A quasi-geodesic in X is a curve γ, which is parametrized by
arclength, such that the following condition holds:
Given points x ∈ X, y1 = γ(t1), y2 = γ(t2), y3 = γ(t3), t1 < t2 < t3, t3 − t1 ≤
d(x, y1)+d(x, y3) < 2Dκ− (t3− t1), choose a comparison triangle x̃, ỹ1, ỹ3 ∈
M2

κ such that d(x̃, ỹ1) = d(x, y1), d(x̃, ỹ3) = d(x, y3), d(ỹ1, ỹ3) = t3− t1 and a
comparison point ỹ2 on [ỹ1, ỹ3] such that d(ỹ2, ỹ1) = t2−t1, d(ỹ2, ỹ3) = t3−t2.
Then d(x, y2) ≥ d(x̃, ỹ2).

The assumption on the distances is made in order to have a triangle inequal-
ity for the comparison triangle x̃, ỹ1, ỹ3.

As a consequence from Alexandrov’s lemma ([9], I 2.16), we get the following
lemma, which will be central in the proof of Theorem 1.

Lemma 2.7. Let γ be a quasi-geodesic in X. Let x, y1, y2, y3 be points as in
the definition of quasi-geodesics. Define ∠̃y2(x, y1) to be the angle at ỹ2 of a
comparison triangle x̃, ỹ1, ỹ2 ∈ M2

κ such that d(x̃, ỹ1) = d(x, y1), d(x̃, ỹ2) =
d(x, y2), d(y1, y2) = t2 − t1. Define ∠̃y2(x, y3) in a similar way. Then
∠̃y2(x, y1) + ∠̃y2(x, y3) ≤ π.
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2

We now come to the important question when a quasi-geodesic can be ex-
tended. First note that each point in a metric space with lower curvature
bound admits a tangent space TA

p X (in further applications, there will be
another notion of tangent space and we write the superscript A to avoid con-
fusion). It is defined as the cone over the completion of the set of germs of
geodesics starting from this point, with the (Alexandrov) angle as distance.
Two vectors v1, v2 ∈ TA

p X are said to be polar if ∠(v1, w) + ∠(v2, w) ≤ π

for all w ∈ TA
p X.

A right tangent vector at s of a Lipschitz curve γ is a limit point of {1
t logγ(s) γ(s+

t), t > 0}. Left tangent vectors are similarly defined. Here logx y is defined
as the point at distance d(x, y) from the origin on the image of a geodesic
between x, y in TA

x X. In general, log is a multi-valued function, since there
may be several geodesics between x and y. In the same way, a curve can
have different tangent vectors. But for quasi-geodesics, this phenomenon
can not occur:

Lemma 2.8. If γ is a quasi-geodesic, then left and right tangent vectors are
unique and polar for all s.

The two main properties of quasi-geodesics are the following.

Proposition 2.9. Gluing
Given two quasi-geodesics γ1 : (−ε, 0] → X, γ2 : [0, ε) → X such that γ1(0) =
γ2(0) and such that the left tangent vector of γ1 at 0 and the right tangent
vector of γ2 at 0 are polar. Then the concatenation of γ1 and γ2 is a quasi-
geodesic.

Proposition 2.10. Existence
For any x ∈ X, v ∈ TA

p X, ‖v‖ = 1, there exists a quasi-geodesic starting at
x with initial right tangent vector v.

Corollary 2.11. Let γ : (−ε, 0] → X be a quasi-geodesic such that x = γ(0)
is a regular point, i.e. TA

x X is Euclidean space. Then γ can be extended
beyond x.

3. Subanalytic spaces, stratifications and generalized tangent
spaces

3.1. Subanalytic sets. For the convenience of those readers who are not
familiar with the theory of subanalytic sets, we will collect some facts which
will be used in the sequel. Several good introductions into the theory of
subanalytic sets, semialgebraic sets and o-minimal structures are available,
see for instance [7],[15], [8].

Let M be a real analytic manifold. A subset X ⊂ M is called semianalytic if
each point x ∈ M admits an open neighborhood U ⊂ M such that X ∩U =
∪i ∩j {gij > 0} ∩ {fi = 0} with (finitely many) analytic functions gij , fi :
U → R. The image of a semianalytic set X ⊂ N under a proper analytic
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map N → M , where N is a real analytic manifold, is called subanalytic
subset of M . The space of subanalytic subsets of a real analytic manifold
is closed under finite intersections, finite unions, taking complements and
taking closures. Moreover, the image of a subanalytic set under a proper
real analytic map is subanalytic.

We will need in this paper the fact that subanalytic sets have nice stratifi-
cations and that strata of codimension 1 behave very regularly.

3.2. Whitney- and Verdier-stratifications. Let M denote a real ana-
lytic manifold. A set X ⊂ M is called stratified, if X can be written as
disjoint, locally finite union of submanifolds of M , called strata, such that
the boundary of each stratum is a union of strata.

For instance, a closed submanifold of M is a stratified set, with one single
stratum. A submanifold with boundary has two strata: the smooth part
and the boundary part.

Without imposing further conditions, not much can be said about stratified
sets. The most common one is the following.

Definition 3.1. A stratified subset X of a smooth N -dimensional manifold
M satisfies Whitney’s condition B at x ∈ X, if for all pairs S1, S2 of strata
with x ∈ S1, and one (and then each) smooth chart φ : U → RN around x,
the following condition is fulfilled:

Let (xk)k∈N, (yk)k∈N be two sequences of points with xk ∈ S1 ∩ U, yk ∈ S2 ∩
U, xk 6= yk, limk→∞ xk = limk→∞ yk = x such that the lines φ(xk)φ(yk)
converge to a line L and such that the tangent spaces dφyk

(Tyk
S2) converge

to a limit space T . Then L ⊂ T .

The space X is said to satisfy condition B if this is the case for each x ∈ X.

Whitney’s condition B has strong topological consequences, for instance it
implies local topological triviality along strata (see [23], 3.9.3. for a proof
of this result of Thom and Mather and further information). But for the
study of metric properties, Verdier’s condition gives more information.

Recall that the vector space distance between two vector spaces T and U
of RN is defined by δ(T,U) := supt∈T,‖t‖=1 d(t, U). In general, δ is not
symmetric, but when restricted to subspaces of the same dimension, δ is a
metric.

Definition 3.2. A stratified subset X of a smooth manifold M of dimension
N satisfies Verdier’s condition at x ∈ X, if for each pair of strata S1, S2 with
x ∈ S1 and one (and then each) smooth chart φ : U → RN around x, there
exists an open neighborhood U ′ ⊂ U of x and a constant CV erdier > 0 such
that for all x′ ∈ S1 ∩ U ′ and y ∈ S2 ∩ U ′

δ(dφx′(Tx′S1), dφy(TyS2)) ≤ CV erdier‖φ(x′)− φ(y)‖. (v)

The set X satisfies Verdier’s condition if this is the case for each x ∈ X.
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In the subanalytic context, Verdier’s condition is stronger than condition
B: namely any subanalytic stratification of a subanalytic set which satisfies
Verdier’s condition also satisfies condition B. Moreover, each subanalytic set
has such a Verdier stratification ([24]).

3.3. Quasi-regular boundary points.

Definition 3.3. Let M be a smooth manifold of dimension N and let X be
an n-dimensional C1-submanifold of M . Then a boundary point x ∈ X̄ \X
is called regular boundary point, if the germ of X at x is C1-diffeomorphic
to the germ at 0 of the set {x ∈ RN : xn > 0, xn+1 = · · · = xN = 0}.

The point x is called quasi-regular boundary point, if there exists a neigh-
borhood U of x such that

a) U ∩ X̄ \X is a C1 submanifold of dimension n− 1,
b) U ∩X has finitely many connected components Γ1, . . . , Γk, and
c) x is a regular boundary point of each Γi, i = 1, . . . , k.

The theorem of Paw lucki relates condition B and quasi-regularity.

Theorem 3.4. (Theorem of Paw lucki, [20])
Let X ⊂ M be an n-dimensional Whitney B stratified subset of the smooth
manifold M . Let x ∈ X be contained in an n− 1-dimensional stratum and
let S be a highest (i.e. n- )dimensional stratum such that x is contained in
the boundary of S. Then x is a quasi-regular boundary point of S.

In fact, Paw lucki’s Theorem is a bit more general, but we will only need the
above version of it.

3.4. Generalized tangent spaces and local description at regular
points. Let X be a compact n-dimensional subanalytic subset of the real
analytic N -dimensional manifold M . Choose a subanalytic stratification of
X such that Verdier’s condition is fulfilled. Then Whitney’s condition B
is fulfilled as well (see above). By Paw lucki’s theorem, each point x of a
stratum S of dimension n− 1 is a quasi-regular boundary point for each n-
dimensional stratum which has S on its boundary. This implies that there
is some open neighborhood V of x in M such that V ∩ (X \ S) has a finite
number of connected components and x is a regular boundary point of each
of them.

Let Γ be one such component. The fact that x is a regular boundary point
implies that (after shrinking V if necessary) there is an open set V ′ ⊂ RN

and a C1-diffeomorphism φ = (φ1, . . . , φN ) : V → V ′ such that Γ = {p ∈ V :
φn(p) > 0, φn+1(p) = · · · = φN (p) = 0}. Shrinking V again, we can suppose
that N := {p ∈ V : φn+1(p) = · · · = φN (p) = 0} is a C1-manifold.

The tangent space TxN is then well-defined and is called tangent space of Γ
and denoted by TxΓ. It is an n-dimensional subspace of TxM and inherits
the natural Euclidean metric from TxM . The tangent space TxS is an n− 1
dimensional subspace of TxN (this follows from Whitney’s condition B).
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Let v+ be the unit vector in TxΓ which is orthogonal to TxS and such that
dφn|x(v+) > 0. We call v+ the inner pointing normal vector of S at x with
respect to Γ. We can write TxΓ as orthogonal sum: TxΓ = TxS ⊕ Rv+.

Definition 3.5. The second fundamental form of S is the sum over the
second fundamental forms IIv+ for all inner pointing normal vectors of S
with respect to the components Γ of V ∩ (X \ S). Here, IIv denotes the
second fundamental form of S in direction v.

Let us now suppose that M = RN is Euclidean space with the canonical
metric. Using the implicit function theorem (after shrinking V if necessary),
we get that the orthogonal projection P = PTxN |N from N to TxN is a C1-
diffeomorphism. The image of Γ under this projection is clearly given by
{p ∈ TxN : φn◦P−1(p) > 0}. We note that φn◦P−1 is a C1-function. Using
the implicit function theorem, we get a C1-function g : TpS → R such that

P (Γ) = {p = (p1, p2) ∈ TxN = TxS ⊕ R : g(p1) > p2}.

We claim that g is even a smooth function. To see this, note that the
restriction of P to S is smooth, since S is a smooth submanifold. Therefore
the image of S under P is a smooth submanifold of TxN , which equals the
set {(p1, p2) ∈ TpN : g(p1) = p2}.

Let us summarize what will be needed in the sequel from this section.

Corollary 3.6. Let X be an n-dimensional compact subanalytic subset of
RN , the latter being equipped with its standard metric. Then there exists a
stratification of X satisfying Verdier’s condition. For each point x ∈ X in a
stratum S of dimension n− 1, there exists an open ball B = B(x, r) around
x, such that the following conditions are fulfilled.

a) The intersection B∩(X\S) is a finite union of connected C1 manifolds
with boundary B ∩ S.

b) For each such manifold Γ there exists a unique limit tangent space at
x, which will be denoted by TxΓ. This means that limy→x,y∈Γ TyΓ →
TxΓ.

c) We have an orthogonal splitting TxΓ = TxS ⊕ Rv+ where v+ is the
inner pointing normal vector of S with respect to Γ.

d) The projection from Γ to TxΓ is given by the set {(p1, p2) ∈ TxΓ ∩
PT (B) : g(p1) > p2} with a smooth function g : TxS ∩ PT (B) → R.

e) Verdier’s condition (v) is fulfilled with some constant CV erdier > 0 for
all x′ ∈ S ∩B, y ∈ Γ ∩B.

f) Whitney’s condition is fulfilled with some constant CWhitney > 0 in
the following form: for all y ∈ Γ∩B, ‖PTxΓ(x−y)‖ ≥ CWhitney‖x−y‖.

4. Asymptotic behavior of angles

Given a point x in an n − 1-dimensional stratum S of a Verdier stratified
n-dimensional compact subanalytic subset X ⊂ RN , we choose a ball B
around x as in Corollary 3.6. Then B∩ (X \S) is a finite union of connected
C1 manifolds with boundary B ∩ S. Let Γ be one such manifold.
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Consider a rectifiable curve γ : [0, tmax) → Γ ∩ S with tmax > 0, γ(0) = x.
We suppose that γ is parameterized by arclength and that the inner pointing
normal vector v+ of S with respect to Γ is the unique tangent vector of γ
at 0, i.e. that γ(t) = x + tv+ + r(t), where r : [0, tmax) → RN is a function
such that limt→0

‖r(t)‖
t = 0. In later applications, γ will be a geodesic or a

quasi-geodesic.

With S being smooth, there is a real smax > 0 such that the exponential
map of S at x is defined for all vectors of norm at most smax > 0. Let
v ∈ TxS be a unit tangent vector of S at x. Define the curve β by β(s) :=
expx sv, |s| ≤ smax. Note that IIv+(v, v) = 〈β′′(0), v+〉.

For fixed s, t we consider a comparison triangle in M2
κ (if it exists) ∆(x̃, β̃(s), γ̃(t))

with side lengths d(x̃, β̃(s)) = d(x, β(s)), d(x̃, γ̃(t)) = t, d(β̃(s), γ̃(t)) = d(β(s), γ(t)).
This is not a comparison triangle in the usual sense, since t can be bigger
than d(x, γ(t)). We do not know for the moment if such a comparison trian-
gle exists, since triangle inequality could be violated. But in the case that
we will consider, triangle inequality will be trivial.

We denote by ∠(κ)
x (β(s), γ(t)) the angle at x̃ of the comparison triangle

∆(x̃, β̃(s), γ̃(t)).

The following proposition relates the asymptotic behavior of this angle with
the second fundamental form of S in direction v+.

Proposition 4.1. Given δ > 0, there exist C1 = C1(δ, x, β, γ) > 0 such that
for all C > C1

lim sup
s→0

1
s

∣∣∣cos ∠(κ)
x (β(s), γ(Cs2)) + cos ∠(κ)

x (β(−s), γ(Cs2))− sIIv+(v, v)
∣∣∣ ≤ δ.

It is easy to see that both angles in the lemma tend to π
2 , so the sum of

the cosines tends to 0. The proposition gives an estimate on the deviation
from 0. This deviation is determined up to a small error term by the second
fundamental form. Once we have further information about these angles,
for instance in the presence of upper or lower bounds of the curvature in
Alexandrov’s sense, we can use this lemma to obtain bounds on the second
fundamental form.

Proof:

Step 1:

Let PT denote the orthogonal projection from RN to the limit tangent space
TxΓ. By Corollary 3.6, PT Γ is given by the points {(p1, p2) ∈ TxΓ∩PT (B) :
g(p1) < p2}.

With x, β fixed we can choose positive constants C2, C3, C4, C5 such that for
all s of sufficiently small absolute value we have the following bounds:

a) s ≥ d(x, β(s)) ≥ ‖x− β(s)‖ ≥ s− C2s
3

b)
∥∥∥β(s)− x− sβ′(0)− s2

2 β′′(0)
∥∥∥ ≤ C3s

3

c) |〈PT β(s)− x, v+〉| ≤ C4s
2
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d) ‖ grad g(y)‖ ≤ C5s for all y ∈ TxS with ‖y − x‖ ≤ s.

This follows from a Taylor expansion of β and the fact that β′(0) ⊥ v+.

We set

C1 = C1(δ, x, β, γ)

:= sup

1
2
〈β′′(0), v+〉, 4C5 + 2C4,

2C3 + 2C2 + 1
4〈β

′′(0), v+〉2 + 4C2
V erdier

C2
Whitney

δ

 .

Fix some C > C1.

Step 2: To find a lower bound for d(β(s), γ(Cs2)), we will use the Euclidean
distance. To find an upper bound, we will project Γ to the tangent space
TxΓ, join the images of β(s) and γ(Cs2) by a straight line and lift this line
to a curve in Γ∪S. To estimate its length, we will need Verdier’s condition.
Let us come to the details.

In TxΓ, we consider the line u 7→ (1−u)PT γ(Cs2)+uPT β(s), 0 ≤ u ≤ 1. We
claim that for sufficiently small s > 0, it is contained in (PT Γ∪PT S)∩PT (B).

To prove the claim, consider the smooth function h(u) := (1− u)p2 + uq2 −
g((1 − u)p1 + uq1), where PT γ(Cs2) = (p1, p2) and PT β(s) = (q1, q2) with
respect to the splitting TxΓ = TxS ⊕Rv+. Note that h(1) = q2 − g(q1) = 0,
since PT β(s) ∈ PT S.

From the asymptotic of γ and the inequalities above, we infer that for suf-
ficiently small s > 0, ‖p1 − x‖ ≤ s, p2 ≥ 1

2Cs2, ‖q1 − x‖ ≤ s, |q2| ≤ C4s
2.

If there is a zero of h in (0, 1), there would be a zero ξ ∈ (0, 1) of the
derivative of h. Then

1
2
Cs2 − C4s

2 ≤ |q2 − p2| ≤ ‖ grad g((1− ξ)p1 + ξq1)‖ · |q1 − p1| ≤ 2C5s
2,

which contradicts the choice of C. Since h(0) > 0, we must have h > 0 on
(0, 1) which proves the claim.

Define the smooth curve ηs : [0, 1] → X as the lift of the line to Γ ∪ S, i.e.
by ηs(u) ∈ Γ ∪ S; PT ηs(u) = (1 − u)PT γ(Cs2) + uPT β(s). Clearly ηs is a
curve between β(s) and γ(Cs2), therefore d(β(s), γ(Cs2)) ≤ length(ηs).

Step 3: Let Qu,s := (PT )|Tηs(u)Γ : Tηs(u)Γ → TxΓ denote the orthogonal
projection and Q−1

u,s : TxΓ → Tηs(u)Γ its inverse.

The distance from x to the line between PT γ(Cs2) and PT β(s) is clearly
bounded by max{s, Cs2} and tends to 0 for s → 0. From Corollary 3.6, f),
it follows that the distance from x to ηs also tends to 0 for s → 0.

Using the convergence of the tangent spaces we obtain some strictly positive
continuous function φcont : (0,∞) → R with lims→0 φcont(s) = 0 such that
for all u ∈ (0, 1) and all sufficiently small s > 0 we have ‖Id − Q−1

u,s‖ ≤
φcont(s).
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Step 4: The derivative of ηs at a point 0 < u < 1 is given by the orthogonal
lift of the vector w := PT β(s) − PT γ(Cs2) ∈ TxΓ to Tηs(u)Γ. According to
the orthogonal splitting TxΓ = TxS⊕Rv+, we decompose w = w1 +w2 with
w1 ∈ TxS and w2 ‖ v+. Then Q−1

u,sw = Q−1
u,sw1 + Q−1

u,sw2.

The reason we do this is that for the lift of w1 we have a strong estimate
coming from Verdier’s condition. For the lift of w2, there is only a weaker
estimate induced by the continuity of the tangent map. On the other hand,
‖w2‖ is very short compared to ‖w1‖, so that we finally will get a good upper
bound for the length of the lift.

Let us first consider the projection Pηs(u)w1 of w1 to Tηs(u)Γ. From Verdier’s
condition, we get

‖w1 − Pηs(u)w1‖ ≤ CV erdier‖x− ηs(u)‖ · ‖w1‖.

With w̄ := w1 − PT Pηs(u)w1 we get

‖w̄‖ ≤ ‖w1 − Pηs(u)w1‖ ≤ CV erdier‖x− ηs(u)‖ · ‖w1‖,
since PT is a projection and PT w1 = w1.

Therefore

‖Q−1
u,sw1 − w1‖ = ‖Q−1

u,sw̄ + Pηs(u)w1 − w1‖
≤ ‖Q−1

u,sw̄‖+ CV erdier‖x− ηs(u)‖ · ‖w1‖
≤ (1 + φcont(s))‖w̄‖+ CV erdier‖x− ηs(u)‖ · ‖w1‖
≤ (2 + φcont(s))CV erdier‖x− ηs(u)‖ · ‖w1‖.

The length of w1 is bounded by ‖w‖ and, supposing that Cs2 ≤ s, i.e.
s ≤ C−1,

‖x− ηs(u)‖ ≤ C−1
Whitney‖x− PT ηs(u)‖ ≤ C−1

Whitneys.

On the other hand, by Step 3,

‖w2 −Q−1
u,sw2‖ ≤ φcont(s)‖w2‖.

The norm of w2 is bounded by

‖w2‖ = |〈w, v+〉|
=

∣∣〈PT γ(Cs2)− PT x, v+

〉
− 〈PT β(s)− x, v+〉

∣∣
≤ ‖γ(Cs2)− x‖+ C4s

2

≤ Cs2 + C4s
2.

It follows that

‖w−Q−1
u,sw‖ ≤ CV erdier(2+φcont(s))C−1

Whitneys‖w‖+φcont(s)(C+C4)s2. (2)

Step 5: We need the asymptotic development for ‖w‖2. Complete v+ and
v to an orthogonal base v+, v, v1, . . . , vn−2 of TxΓ. Then ‖w‖2 = 〈w, v+〉2 +
〈w, v〉2 +

∑n−2
i=1 〈w, vi〉2.
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∣∣∣∣〈w, v+〉 −
s2

2
〈β′′(0), v+〉+ Cs2 + 〈r(Cs2), v+〉

∣∣∣∣
≤

∣∣∣∣〈PT β(s)− x, v+〉 −
s2

2
〈β′′(0), v+〉

∣∣∣∣︸ ︷︷ ︸
≤C3s3

+
∣∣〈x− PT γ(Cs2), v+〉+ Cs2 + 〈r(Cs2), v+〉

∣∣︸ ︷︷ ︸
=0

≤ C3s
3. (3)

Since β is a geodesic on S, β′′(0) ⊥ TxS and therefore∣∣〈w, v〉 − s + 〈r(Cs2), v〉
∣∣ ≤ |〈PT β(s)− x− sv, v〉| ≤ C3s

3.

For i = 1, 2, . . . , n− 2 we obtain∣∣〈w, vi〉+ 〈r(Cs2), vi〉
∣∣ = |〈PT β(s)− x, vi〉| ≤ C3s

3,

i.e. 〈w, vi〉2 ≤ o(s4).

From the preceding estimates, we get for s → 0,

‖w‖2 ≤ s2−2s〈r(Cs2), v〉+s4

(
C2 +

1
4
〈β′′(0), v+〉2 − C〈β′′(0), v+〉+ 2C3

)
+o(s4).

(4)

Similarly,

‖w‖2 ≥ s2−2s〈r(Cs2), v〉+s4

(
C2 +

1
4
〈β′′(0), v+〉2 − C〈β′′(0), v+〉 − 2C3

)
+o(s4).

As a first consequence we have ‖w‖ ≥ 1
2s provided s is sufficiently small.

Replacing this into equation 2, we get with C6 = C6(s, C) := CV erdier(2 +
φcont(s))C−1

Whitney + 2φcont(s)(C + C4)

‖w −Q−1
u,sw‖ ≤ C6s‖w‖.

By construction, we have the orthogonal decomposition Q−1
u,sw = w+(Q−1

u,sw−
w) from which we deduce

‖Q−1
u,sw‖2 ≤ (1 + C2

6s2)‖w‖2.

It follows that the length of the curve ηs, and hence the distance between
β(s) and γ(Cs2) is bounded by

d(β(s), γ(Cs2))2 ≤ (1 + C2
6s2)‖w‖2

≤ s2 − 2s〈r(Cs2), v〉+

+ s4

(
C2 +

1
4
〈β′′(0), v+〉2 − C〈β′′(0), v+〉+ 2C3 + C2

6

)
+ o(s4).
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On the other hand, since PT does not increase distances,

d(β(s), γ(Cs2))2 ≥ ‖w‖2

≥ s2 − 2s〈r(Cs2), v〉+

+ s4

(
C2 +

1
4
〈β′′(0), v+〉2 − C〈β′′(0), v+〉 − 2C3

)
+ o(s4).

Step 6: Replacing this into the formula for the cosine in the case κ = 0
yields

cos ∠(0)
x (β(s), γ(Cs2)) ≤ s

2

(
〈β′′(0), v+〉+ 2

C3

C

)
+

1
Cs2

〈r(Cs2), v〉+ o(s).

The angle cos ∠(0)
x (β(−s), γ(Cs2)) can be bounded in a similar way, taking

care that now we have to use −v instead of v. The result is

cos ∠(0)
x (β(−s), γ(Cs2)) ≤ s

2

(
〈β′′(0), v+〉+ 2

C3

C

)
− 1

Cs2
〈r(Cs2), v〉+ o(s).

Taking the sum of both inequalities and passing to the lim sup, we obtain

lim sup
s→0

1
s

(
cos ∠(0)

x (β(s), γ(Cs2)) + cos ∠(0)
x (β(−s), γ(Cs2))

)
≤ 〈β′′(0), v+〉+

2C3

C
≤ 〈β′′(0), v+〉+ δ.

Using the upper bound for d(β(s), γ(Cs2)) and proceeding as before (taking
into account that lims→0 C6(C, s) = 2CV erdierC

−1
Whitney), we also get

lim inf
s→0

1
s

(
cos ∠(0)

x (β(s), γ(Cs2)) + cos ∠(0)
x (β(−s), γ(Cs2))

)
≥ 〈β′′(0), v+〉−

2C3 + 2C2

C
− 1

4C
〈β′′(0), v+〉2−

2C2
V erdier

C2
WhitneyC

≥ 〈β′′(0), v+〉−δ.

This finishes the proof of Proposition 4.1 in the case κ = 0. The general
case then follows easily from the following lemma.

Lemma 4.2. Let ∠(κ)(a, b, c) denote the angle (in face of c) of a triangle in
M2

κ with side lengths a, b, c, a ≥ b > 0. Then

lim
a,b→0;a≥b

1
a

(
cos ∠(0)(a, b, c)− cos ∠(κ)(a, b, c)

)
= 0.

Proof of the Lemma: The case κ = 0 is trivial, so let us assume κ 6= 0.
We set cosκ(x) := cos(

√
κx), sinκ(x) := sin(

√
κx) (if κ < 0 this is still defined

as a complex-valued function).

The law of cosines in M2
κ reads ([9], I 2.13)

cos ∠(κ)(a, b, c) =
cosκ c− cosκ a cosκ b

sinκ a sinκ b
.

Replacing the Taylor development cosκ(x) = 1−κx2

2 +
∑

i≥4 aix
i, sinκ(x) =√

κx−
∑

i≥3 bix
i in this formula we easily get the statement of the lemma,

and hence the general case of the proposition. 2
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5. Proof of the comparison theorem in the case of an upper
curvature bound

We recall that M is a real analytic manifold with a Riemannian metric g
and X ⊂ M an n-dimensional compact connected subanalytic subset. We
suppose that X is a topological manifold. The metric g induces on X an
inner metric, denoted by d.

Using a local real analytic isometric embedding of M in an Euclidean space,
we can suppose that M = RN .

5.1. Proof of K ≤ κ =⇒ ric ≤ (n− 1)κ.
We suppose that X has curvature bounded from above by κ in the sense
of Alexandrov (see Section 2). Since the density function is upper semi-
continuous on such a space, and since θ(X, x) = 1 for a dense set of points,
namely for all points in highest-dimensional strata, we get θ(X, x) ≥ 1 for
all x ∈ X.

Choose a stratification of X according to Corollary 3.6.

Since the condition on the upper curvature bound is a local one, the sectional
curvature of each highest dimensional stratum is bounded from above by κ.
It follows that the Ricci curvature of such a stratum is bounded from above
by (n− 1)κ.

Now consider a stratum S of codimension 1 and x ∈ S. From the local
description given in Corollary 3.6, we get some small r > 0, such that
B(x, r)∩ (X \S) is a finite union of connected C1-manifolds with boundary
B(x, r) ∩ S. The fact that X is a topological manifold implies that there
are exactly two such manifolds, denoted by Γ1, Γ2. Let vi

+ denote the inner
pointing normal vector of S with respect to Γi, i = 1, 2.

Suppose there is a geodesic γ : [0, tmax) → S ∪ Γ1 with γ(0) = x and such
that v1

+ is the unique (right) tangent vector of γ at 0. Metric spaces with
upper curvature bound which are topological manifolds have the geodesic
extension property. We deduce that γ can be extended to a geodesic γ :
(tmin, tmax) → X, tmin < 0 < tmax. It is intuitively clear that the negative
part of γ will be in Γ2 and that the left tangent vector of γ at 0 is v2

+. In
fact, this is a consequence of the law of reflection of [2]. It also follows from
it that there is a dense set of points x through which passes such a geodesic.

There is a real number smax > 0 such that the exponential map of S at x
is defined for all vectors of norm at most smax > 0. Let v ∈ TxS be a unit
tangent vector of S at x. Define the curve β by β(s) := expx sv, |s| ≤ smax.

Let δ > 0 be given. Then, by Proposition 4.1, there exists a C1 > 0 such
that for all C > C1

lim sup
s→0

1
s

∣∣∣cos ∠(κ)
x (β(s), γ(Cs2)) + cos ∠(κ)

x (β(−s), γ(Cs2))− sIIv1
+

(v, v)
∣∣∣ ≤ δ.

In this inequality, the angles denote comparison angles in the classical sense,
since the geodesic property of γ implies that d(x, γ(t)) = t for all t ≥ 0.
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Applying the same proposition to Γ2, there is a C2 > 0 such that for all
C > C2 the same inequality is satisfied with γ(Cs2) replaced by γ(−Cs2)
and v1

+ replaced by v2
+. We choose C > max{C1, C2}.

The upper curvature bound and the fact that γ is a geodesic imply that for
s > 0, the sum of the angles ∠(κ)

x (β(s), γ(Cs2)) and ∠(κ)
x (β(s), γ(−Cs2)) is

at least π. From the monotony of the cosine function, we get

cos ∠(κ)
x (β(s), γ(Cs2)) + cos ∠(κ)

x (β(s), γ(−Cs2)) ≤ 0,

and similarly

cos ∠(κ)
x (β(−s), γ(Cs2)) + cos ∠(κ)

x (β(−s), γ(−Cs2)) ≤ 0.

Replacing this into the inequality above implies that II(v, v) ≤ δ. Since
δ > 0 and v were arbitrary, we finally have II ≤ 0.

From Corollary 3.6 a) we deduce that the vectors v+ and v− depend con-
tinuously on the base point x, therefore II depends continuously on x. We
conclude that II ≤ 0 on all of S. 2

5.2. Proof of K ≤ κ implies E ≤
(
n−1

2

)
κ. On highest dimensional strata,

the implication is easy and classical. As above, the density is at least 1 in
each point. On strata S of codimension 1, we get by the above reasoning
that II ≤ 0 and this implies that tr IIg|S − II ≤ 0. 2

5.3. Proof of ric ≤ (n− 1)κ =⇒ s ≤ n(n− 1)κ.
Now suppose that X has Ricci curvature bounded from above by (n− 1)κ.
On highest dimensional strata, this implies that the classical Ricci curvature
is bounded from above by (n − 1)κ and then the classical scalar curvature
is bounded from above by n(n − 1)κ. On strata of codimension 1, the
upper Ricci-curvature bound means that the second fundamental form is
non-positive, therefore the same is true for mean curvature of such a stratum.
Finally, by definition, the density at each point is at least 1. 2

5.4. Proof of E ≤
(
n−1

2

)
κ =⇒ s ≤ n(n− 1)κ (if dim X ≥ 3).

Just take the trace of E on highest-dimensional strata and the trace of
tr IIg|S − II on strata S of codimension 1. The argument breaks down in
dimension 2, since then E = 0 and tr IIg|S − II = 0. 2

6. Proof of the comparison theorem in the case of a lower
curvature bound

6.1. Proof of K ≥ κ =⇒ ric ≥ (n− 1)κ.
Suppose that X has sectional curvature bounded from below by κ ∈ R in
the sense of Alexandrov (see 1.1). We want to show that its Ricci curvature
is bounded from below by (n− 1)κ.
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Choose a stratification according to Corollary 3.6. On highest dimensional
strata, Alexandrov’s condition is equivalent to the classical sectional curva-
ture being bounded from below by κ. And this implies that the Ricci tensor
is bounded from below by (n− 1)κg.

Every point in a highest-dimensional stratum has density 1. From the lower
semi-continuity of the density function in Alexandrov spaces of curvature
bounded below, we get that the density is at most 1 at each point.

Again, as in the case of an upper curvature bound, the difficulty lies in the
strata of codimension 1. Let x ∈ S be a point in a stratum of codimension
1. Locally, we again have the description of Corollary 3.6. Suppose that y
is a point in Γ1 such that x is the nearest point to y on S. This will happen
for a dense set of points x, as was indicated in the previous section.

Connect x and y by a geodesic γ. If we can extend γ beyond x, then we
can proceed as in the case of an upper curvature bound and use Proposition
4.1 to show that the second fundamental form of S at the point x is non-
negative. There is, however, the problem that in general γ can not be
extended. On the other hand, what we really need to accomplish the proof
along the same lines as in the case of an upper curvature bound is not the
fact that γ is a geodesic, but a certain behavior of angles which also holds
true for quasigeodesics, and quasigeodesics can be extended through regular
points.

There are two technical problems related to this approach. First we shall
show that a point x ∈ S is regular in the sense of Alexandrov, i.e. its
(Alexandrov) tangent space is Euclidean space. Secondly, we need an as-
ymptotic formula of the form γ(t) = x + tv+ + o(t) for a quasigeodesic
with (Alexandrov) initial vector v+. This will be achieved in the next two
lemmas.

Lemma 6.1. Let X be a compact subanalytic set. Suppose that X is an
n-dimensional topological manifold and that X has curvature bounded from
below by κ ∈ R in the sense of Alexandrov. Let x ∈ S be a point in an n−1-
dimensional stratum of a Verdier stratification of X. Then x is regular in
the sense of Alexandrov, i.e. the Alexandrov tangent space is isometric to
Rn.

Proof: Denote the Alexandrov tangent space of X at x by TA
x X.

Choose an orthonormal base v1, . . . , vn−1 of TxS. For i = 1, . . . , n−1, choose

a sequence yi
1, y

i
2, . . . of points in S with limit x such that

yi
j−x

‖yi
j−x‖ → vi.

Denote by γi one limit of the sequence {logx yi
j , j = 1, 2, . . .}. Using −vi

instead of vi, we obtain a limit γ′i. For the moment, we do not know if these
limits are unique, but it will turn out from this lemma that they actually
are unique.

By Corollary 3.6, a small neighborhood of x consists of the union of S and
two C1-manifolds Γ1 and Γ2, with corresponding normal vectors v1

+ and
v2
+. Choose a sequence of points y1, y2, . . . in Γ1 converging to x such that
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yi−x
‖yi−x‖ → v1

+. Let γn ∈ TA
x X be one limit of the sequence {logx yi ∈ TA

x X}.
Using v2

+ instead of v1
+, we obtain a point γ′n ∈ TA

x X.

We claim that

• ∠(γi, γj) ≥ π
2 ,∠(γ′i, γj) ≥ π

2 ,∠(γ′i, γ
′
j) ≥ π

2 if i 6= j.
• ∠(γi, γ

′
i) = π for all i = 1, . . . , n.

We just sketch the proof of the claim (see [1] for more details). First, Whit-
ney’s condition implies that the (inner) distance from x to some point y ∈ X
which is near x is nearly the same as the Euclidean distance. This means
that both differ by a factor which tends to 1 if y tends to x. The length
of the third side of a triangle xy1y2 can be bounded from below by the
Euclidean distance between y1, y2. Passing to the limit, one obtains the in-
equality above. The equality is proved in a similar way for i = 1, . . . , n− 1.
For i = n one uses the fact that y ∈ Γ1 sufficiently close to x will lie in
a tubular neighborhood of S and that each geodesic between two points
y1 ∈ Γ1, y2 ∈ Γ2 near x has to pass through S. We skip the (easy) details.

Now we can finish the proof of the lemma. By the second statement, we
get that the union of R+γ1 and R+γ′1 is a geodesic line in TA

x X. From
the splitting theorem ([11], 10.5.1.), we get TA

x X = R × Y for some non-
negatively curved space Y . The first condition implies that γi, γ

′
i ∈ Y for

i = 2, . . . , n. Then we can apply the splitting theorem again to split off
another R-factor. Continuing this way, we finally get TA

x X = Rn.

The inequalities above show furthermore that the points γi, γ
′
i, i = 1, . . . , n

do not depend on the particular choice of sequences y1, y2, . . . and are uniquely
defined. 2

Lemma 6.2. Let γn = limi→∞ logx yi, where y1, y2, . . . is a sequence of
points of Γ1 converging to x such that yi−x

‖yi−x‖ → v1
+. Let γ be a quasi-

geodesic starting at x with initial (Alexandrov) tangent vector γn. Then
limt→0

γ(t)−x
t = v1

+.

Proof: Set ti := ‖yi − x‖ → 0. By definition of γn and the uniqueness
of the tangent vector for quasigeodesics, logx yi

ti
→ γn and logx γ(ti)

ti
= γn.

Therefore

lim
i→∞

d

(
1
ti

logx γ(ti),
1
ti

logx yi

)
= 0.

The log-function is distance non-decreasing, which implies that

d(γ(ti), yi)
ti

≤ d(logx γ(ti), logx yi)
ti

→ 0.

Finally we get∥∥∥∥γ(ti)− x− tiv
1
+

ti

∥∥∥∥ ≤ d(γ(ti), yi)
ti

+
‖yi − x− tiv

1
+‖

ti
→ 0.
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The same reasoning works for any sequence of points y1, y2, . . . with yi →
x, yi ∈ Γ1,

yi−x
‖yi−x‖ → v1

+, since γn does not depend on the particular choice
of such a sequence (see proof of Lemma 6.1). It follows that

lim
t→0

γ(t)− x− tv1
+

t
= 0.

2

We can now finish the proof of Theorem 1 in the case of lower curvature
bounds.

There is a dense set of points x ∈ S such that there is a point y ∈ Γ2 with
the property that x is the nearest point on S to y. By continuity of II, it
suffices to show that II is non-negative on this set. Let x ∈ S, y ∈ Γ2 be a
pair of such points.

Consider a geodesic between y and x. By simple variation arguments (which
are made explicit in [2]), γ(t) = x + |t|v2

+ + o(|t|), t < 0. The last lemma
implies that the tangent vector in the Alexandrov sense is given by γ′n ∈
TA

x X = Rn. We can extend γ as a quasi-geodesic beyond x, as x is regular
(see Lemma 6.1 and Corollary 2.11). The right tangent vector of γ at 0 is
given by γn. The previous lemma applied to the positive part of γ yields
the asymptotic behavior γ(t) = x + tv1

+ + o(t), t > 0.

Let v ∈ TxS be a unit tangent vector. Define the curve β by setting for
|s| < smax β(s) := expx sv, where expx is the exponential map of S and
smax the injectivity radius of S at x.

Let δ > 0 be given. Then, by Proposition 4.1, there exists a C1 > 0 such
that for all C > C1

lim sup
s→0

1
s

∣∣∣cos ∠(κ)
x (β(s), γ(Cs2)) + cos ∠(κ)

x (β(−s), γ(Cs2))− sIIv1
+

(v, v)
∣∣∣ ≤ δ.

Applying the same proposition to Γ2, there is a C2 > 0 such that for all
C > C2 the same inequality is satisfied with γ(Cs2) replaced by γ(−Cs2)
and v1

+ replaced by v2
+. We choose C > max{C1, C2}.

The fact that γ is a quasi-geodesic implies that for s > 0, the sum of the
angles ∠(κ)

x (β(s), γ(Cs2)) and ∠(κ)
x (β(s), γ(−Cs2)) is at most π (see Lemma

2.7). From the monotony of the cosine function, we get

cos ∠(κ)
x (β(s), γ(Cs2)) + cos ∠(κ)

x (β(s), γ(−Cs2)) ≥ 0

and similarly

cos ∠(κ)
x (β(−s), γ(Cs2)) + cos ∠(κ)

x (β(−s), γ(−Cs2)) ≥ 0.

Replacing this into the inequality above implies that II(v, v) ≥ −δ. Since v
and δ > 0 were arbitrary, we finally have II ≥ 0.

The proof of the first part of Theorem 1 in the case of a lower curvature
bound is now complete.
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6.2. Proof of K ≥ κ implies E ≥
(
n−1

2

)
κ. Again, the result is trivial

for strata of codimension 0. By the arguments above, each point in X has
density at most 1. On strata S of codimension 1, we have II ≥ 0 and this
implies that tr IIg|S − II ≥ 0. 2

6.3. Proof of ric ≥ (n− 1)κ =⇒ s ≥ n(n− 1)κ.
Suppose X has Ricci curvature bounded from below by (n−1)κ. This implies
that on highest dimensional strata, the classical Ricci curvature is bounded
from below by (n− 1)κ and therefore the scalar curvature is bounded from
below by n(n− 1)κ. On strata of codimension 1, the lower Ricci curvature
bound implies that the second fundamental form and therefore also the mean
curvature is non-negative. Finally, the density at each point is at most 1
by definition of the Ricci curvature bound. We conclude that if the Ricci
curvature of X is at least (n − 1)κ, then its scalar curvature is at least
n(n− 1)κ. 2

6.4. Proof of E ≥
(
n−1

2

)
=⇒ s ≥ n(n− 1)κ (if dim X ≥ 3).

Just take the trace of E on highest-dimensional strata and the trace of
tr IIg|S − II on strata of codimension 1. As in the case of upper curvature
bounds, the argument does not work if dim X = 2, since then E = tr IIg|S−
II = 0. 2

This finishes the proof of Theorem 1 in the case of lower curvature bounds.
2.
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las. Annals of Global Analysis and Geometry 24 (2003), 67-93
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